- Функции
- Aggregate functions
- Агрегатные функции
- exponentialMovingAverage
exponentialMovingAverage
exponentialMovingAverage
Вычисляет экспоненциальную скользящую среднюю значений за заданный период времени.
Синтаксис
exponentialMovingAverage(x)(value, timeunit)
Каждое value соответствует определённому timeunit. Период полураспада x — это временная задержка, за которую экспоненциальные веса уменьшаются вдвое. Функция возвращает взвешенную среднюю: чем старше временная точка, тем меньший вес имеет соответствующее значение.
Аргументы
value— Значение. Целое, Вещественное или Десятичное.timeunit— Временной интервал. Целое, Вещественное или Десятичное. Временной интервал не является временной меткой (секунды), это — индекс временного интервала. Может быть вычислен с помощью intDiv.
Параметры
x— Период полураспада. Целое, Вещественное или Десятичное.
Возвращаемые значения
- Возвращает экспоненциально сглаженную скользящую среднюю значений за последние
xвременных интервалов на последней временной точке.
Тип: Float64.
Примеры
Входная таблица:
┌──temperature─┬─timestamp──┐
│ 95 │ 1 │
│ 95 │ 2 │
│ 95 │ 3 │
│ 96 │ 4 │
│ 96 │ 5 │
│ 96 │ 6 │
│ 96 │ 7 │
│ 97 │ 8 │
│ 97 │ 9 │
│ 97 │ 10 │
│ 97 │ 11 │
│ 98 │ 12 │
│ 98 │ 13 │
│ 98 │ 14 │
│ 98 │ 15 │
│ 99 │ 16 │
│ 99 │ 17 │
│ 99 │ 18 │
│ 100 │ 19 │
│ 100 │ 20 │
└──────────────┴────────────┘
Запрос:
SELECT exponentialMovingAverage(5)(temperature, timestamp);
Результат:
┌──exponentialMovingAverage(5)(temperature, timestamp)──┐
│ 92.25779635374204 │
└───────────────────────────────────────────────────────┘
Запрос:
SELECT
value,
time,
round(exp_smooth, 3),
bar(exp_smooth, 0, 1, 50) AS bar
FROM
(
SELECT
(number = 0) OR (number >= 25) AS value,
number AS time,
exponentialMovingAverage(10)(value, time) OVER (Rows BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS exp_smooth
FROM numbers(50)
)
Результат:
┌─value─┬─time─┬─round(exp_smooth, 3)─┬─bar────────────────────────────────────────┐
│ 1 │ 0 │ 0.067 │ ███▎ │
│ 0 │ 1 │ 0.062 │ ███ │
│ 0 │ 2 │ 0.058 │ ██▊ │
│ 0 │ 3 │ 0.054 │ ██▋ │
│ 0 │ 4 │ 0.051 │ ██▌ │
│ 0 │ 5 │ 0.047 │ ██▎ │
│ 0 │ 6 │ 0.044 │ ██▏ │
│ 0 │ 7 │ 0.041 │ ██ │
│ 0 │ 8 │ 0.038 │ █▊ │
│ 0 │ 9 │ 0.036 │ █▋ │
│ 0 │ 10 │ 0.033 │ █▋ │
│ 0 │ 11 │ 0.031 │ █▌ │
│ 0 │ 12 │ 0.029 │ █▍ │
│ 0 │ 13 │ 0.027 │ █▎ │
│ 0 │ 14 │ 0.025 │ █▎ │
│ 0 │ 15 │ 0.024 │ █▏ │
│ 0 │ 16 │ 0.022 │ █ │
│ 0 │ 17 │ 0.021 │ █ │
│ 0 │ 18 │ 0.019 │ ▊ │
│ 0 │ 19 │ 0.018 │ ▊ │
│ 0 │ 20 │ 0.017 │ ▋ │
│ 0 │ 21 │ 0.016 │ ▋ │
│ 0 │ 22 │ 0.015 │ ▋ │
│ 0 │ 23 │ 0.014 │ ▋ │
│ 0 │ 24 │ 0.013 │ ▋ │
│ 1 │ 25 │ 0.079 │ ███▊ │
│ 1 │ 26 │ 0.14 │ ███████ │
│ 1 │ 27 │ 0.198 │ █████████▊ │
│ 1 │ 28 │ 0.252 │ ████████████▌ │
│ 1 │ 29 │ 0.302 │ ███████████████ │
│ 1 │ 30 │ 0.349 │ █████████████████▍ │
│ 1 │ 31 │ 0.392 │ ███████████████████▌ │
│ 1 │ 32 │ 0.433 │ █████████████████████▋ │
│ 1 │ 33 │ 0.471 │ ███████████████████████▌ │
│ 1 │ 34 │ 0.506 │ █████████████████████████▎ │
│ 1 │ 35 │ 0.539 │ ██████████████████████████▊ │
│ 1 │ 36 │ 0.57 │ ████████████████████████████▌ │
│ 1 │ 37 │ 0.599 │ █████████████████████████████▊ │
│ 1 │ 38 │ 0.626 │ ███████████████████████████████▎ │
│ 1 │ 39 │ 0.651 │ ████████████████████████████████▌ │
│ 1 │ 40 │ 0.674 │ █████████████████████████████████▋ │
│ 1 │ 41 │ 0.696 │ ██████████████████████████████████▋ │
│ 1 │ 42 │ 0.716 │ ███████████████████████████████████▋ │
│ 1 │ 43 │ 0.735 │ ████████████████████████████████████▋ │
│ 1 │ 44 │ 0.753 │ █████████████████████████████████████▋ │
│ 1 │ 45 │ 0.77 │ ██████████████████████████████████████▍ │
│ 1 │ 46 │ 0.785 │ ███████████████████████████████████████▎ │
│ 1 │ 47 │ 0.8 │ ███████████████████████████████████████▊ │
│ 1 │ 48 │ 0.813 │ ████████████████████████████████████████▋ │
│ 1 │ 49 │ 0.825 │ █████████████████████████████████████████▎ │
└───────┴──────┴──────────────────────┴────────────────────────────────────────────┘
CREATE TABLE data
ENGINE = Memory AS
SELECT
10 AS value,
toDateTime('2020-01-01') + (3600 * number) AS time
FROM numbers_mt(10);
-- Calculate timeunit using intDiv
SELECT
value,
time,
exponentialMovingAverage(1)(value, intDiv(toUInt32(time), 3600)) OVER (ORDER BY time ASC) AS res,
intDiv(toUInt32(time), 3600) AS timeunit
FROM data
ORDER BY time ASC;
┌─value─┬────────────────time─┬─────────res─┬─timeunit─┐
│ 10 │ 2020-01-01 00:00:00 │ 5 │ 438288 │
│ 10 │ 2020-01-01 01:00:00 │ 7.5 │ 438289 │
│ 10 │ 2020-01-01 02:00:00 │ 8.75 │ 438290 │
│ 10 │ 2020-01-01 03:00:00 │ 9.375 │ 438291 │
│ 10 │ 2020-01-01 04:00:00 │ 9.6875 │ 438292 │
│ 10 │ 2020-01-01 05:00:00 │ 9.84375 │ 438293 │
│ 10 │ 2020-01-01 06:00:00 │ 9.921875 │ 438294 │
│ 10 │ 2020-01-01 07:00:00 │ 9.9609375 │ 438295 │
│ 10 │ 2020-01-01 08:00:00 │ 9.98046875 │ 438296 │
│ 10 │ 2020-01-01 09:00:00 │ 9.990234375 │ 438297 │
└───────┴─────────────────────┴─────────────┴──────────┘
-- Calculate timeunit using toRelativeHourNum
SELECT
value,
time,
exponentialMovingAverage(1)(value, toRelativeHourNum(time)) OVER (ORDER BY time ASC) AS res,
toRelativeHourNum(time) AS timeunit
FROM data
ORDER BY time ASC;
┌─value─┬────────────────time─┬─────────res─┬─timeunit─┐
│ 10 │ 2020-01-01 00:00:00 │ 5 │ 438288 │
│ 10 │ 2020-01-01 01:00:00 │ 7.5 │ 438289 │
│ 10 │ 2020-01-01 02:00:00 │ 8.75 │ 438290 │
│ 10 │ 2020-01-01 03:00:00 │ 9.375 │ 438291 │
│ 10 │ 2020-01-01 04:00:00 │ 9.6875 │ 438292 │
│ 10 │ 2020-01-01 05:00:00 │ 9.84375 │ 438293 │
│ 10 │ 2020-01-01 06:00:00 │ 9.921875 │ 438294 │
│ 10 │ 2020-01-01 07:00:00 │ 9.9609375 │ 438295 │
│ 10 │ 2020-01-01 08:00:00 │ 9.98046875 │ 438296 │
│ 10 │ 2020-01-01 09:00:00 │ 9.990234375 │ 438297 │
└───────┴─────────────────────┴─────────────┴──────────┘